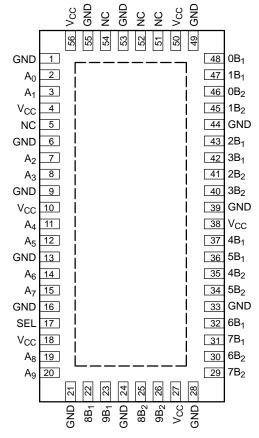
www.ti.com

SCDS197C-DECEMBER 2005-REVISED APRIL 2006


FEATURES

- Compatible With HDMI v1.2a (Type A) DVI 1.0 High-Speed Digital Interface
 - Wide Bandwidth of Over 1.65 Gbps (Bandwidth 2.4 Gbps Typ)
 - 165-MHz Speed Operation
 - Serial Data Stream at 10× Pixel Clock Rate
 - Supports All Video Formats up to 1080p and SXGA (1280 × 1024 at 75 Hz)
 - Total Raw Capacity 4.95 Gbps (Single Link)
 - HDCP Compatible
- Low Crosstalk (X_{TALK} = -41 dB Typ)
- Low Bit-to-Bit Skew (t_{sk(o)} = 0.1 ns Max)
- Low and Flat ON-State Resistance $(r_{on} = 6 \Omega \text{ Max}, r_{on(flat)} = 0.5 \Omega \text{ Typ})$
- Low Input/Output Capacitance (C_{ON} = 7.8 pF Typ)
- Rail-to-Rail Switching on Data I/O Ports (0 to 5 V)
- V_{CC} Operating Range From 3 V to 3.6 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)

APPLICATIONS

- DVI/HDMI Signal Switching
- Differential DVI, HDMI Signal Multiplexing for Audio/Video Receivers and High-Definition Televisions (HDTVs)

TQFN PACKAGE (TOP VIEW)

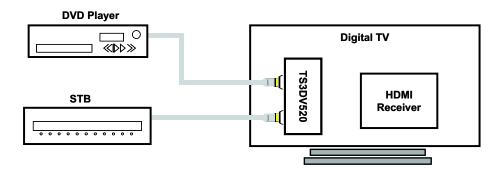
NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

The TS3DV520 is a 20-bit to 10-bit multiplexer/demultiplexer digital video switch with a single select (SEL) input. SEL controls the data path of the multiplexer/demultiplexer. The device provides five differential channels for digital video signal switching.

This device provides low and flat ON-state resistance (r_{on}) and excellent ON-state resistance match. Low input/output capacitance, high bandwidth, low skew, and low crosstalk among channels make this device suitable for various digital video applications, such as DVI and HDMI.

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

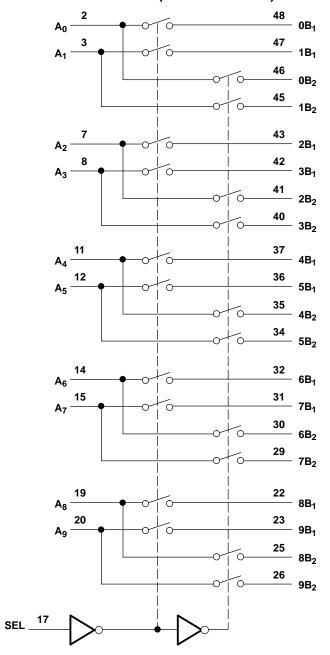
5-CHANNEL DIFFERENTIAL 10:20 MULTIPLEXER SWITCH FOR DVI/HDMI APPLICATIONS

SCDS197C-DECEMBER 2005-REVISED APRIL 2006

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	TQFN	Tape and reel	TS3DV520RHUR	SD520

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


FUNCTION TABLE

INPUT SEL	INPUT/OUTPUT An	FUNCTION					
L	nB ₁	$A_n = nB_1$ nB_2 high-impedance mode					
Н	nB ₂	$A_n = nB_2$	nB ₁ high-impedance mode				

PIN DESCRIPTION

NAME	DESCRIPTION
A _n	Data I/O
nB _m	Data I/O
SEL	Select input

LOGIC DIAGRAM (POSITIVE LOGIC)

TS3DV520 5-CHANNEL DIFFERENTIAL 10:20 MULTIPLEXER SWITCH FOR DVI/HDMI APPLICATIONS

SCDS197C-DECEMBER 2005-REVISED APRIL 2006

Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	4.6	V
V_{IN}	Control input voltage range ⁽²⁾⁽³⁾		-0.5	7	V
V _{I/O}	Switch I/O voltage range ⁽²⁾⁽³⁾⁽⁴⁾		-0.5	7	V
I _{IK}	Control input clamp current	V _{IN} < 0		-50	mA
I _{I/OK}	I/O port clamp current	V _{I/O} < 0		-50	mA
I _{I/O}	ON-state switch current ⁽⁵⁾			±128	mA
	Continuous current through V _{CC} or GND			±100	mA
θ_{JA}	Package thermal impedance ⁽⁶⁾			31.8	°C/W
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages are with respect to ground, unless otherwise specified.

(4) V_I and V_O are used to denote specific conditions for $V_{I/O}$.

(5) I_I and I_O are used to denote specific conditions for I_{I/O}.

Recommended Operating Conditions⁽¹⁾

		MIN	MAX	UNIT
V_{CC}	Supply voltage	3	3.6	V
V_{IH}	High-level control input voltage (SEL)	2	5.5	V
V _{IL}	Low-level control input voltage (SEL)	0	0.8	V
V _{I/O}	Input/output voltage	0	5.5	V
T_A	Operating free-air temperature	-40	85	°C

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

⁽³⁾ The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽⁶⁾ The package thermal impedance is calculated in accordance with JESD 51-7.

Electrical Characteristics (1)

for high-frequency switching over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARA	METER	TEST CONI		NDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
V _{IK}	SEL	$V_{CC} = 3.6 \text{ V},$	I _{IN} = -18 mA				-0.7	-1.2	V
I _{IH}	SEL	$V_{CC} = 3.6 \text{ V},$	$V_{IN} = V_{CC}$					±1	μΑ
I _{IL}	SEL	$V_{CC} = 3.6 \text{ V},$	$V_{IN} = GND$					±1	μΑ
I _{off}		$V_{CC} = 0$,	$V_0 = 0 \text{ to } 3.6 \text{ V},$	$V_I = 0$				1	μΑ
I _{CC}		$V_{CC} = 3.6 \text{ V},$	$I_{I/O}=0,$	Switch ON or OFF			250	500	μΑ
C _{IN}	SEL	f = 1 MHz,	$V_{IN} = 0$				2	2.5	pF
C _{OFF}	B port	$V_I = 0$,	f = 1 MHz,	Outputs open,	Switch OFF		2.5	3	pF
C _{ON}		$V_I = 0$,	f = 1 MHz,	Outputs open,	Switch ON		7.8	8.5	pF
r _{on}		$V_{CC} = 3 V$,	$1.5 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}},$	$I_O = -40 \text{ mA}$			3.5	6	Ω
r _{on(flat)} (3)		$V_{CC} = 3 V$,	$V_I = 1.5 \text{ V} \text{ and } V_{CC}$	$I_O = -40 \text{ mA}$			0.5		Ω
$\Delta r_{on}^{(4)}$		$V_{CC} = 3 V$,	$1.5 \text{ V} \leq \text{V}_{\text{I}} \leq \text{V}_{\text{CC}},$	$I_O = -40 \text{ mA}$	·		0.4	1	Ω

- $\begin{array}{lll} \hbox{(1)} & V_I, \ V_O, \ I_I, \ and \ I_O \ refer \ to \ I/O \ pins. \ V_{IN} \ refers \ to \ the \ control \ inputs. \\ \hbox{(2)} & All \ typical \ values \ are \ at \ V_{CC} = 3.3 \ V \ (unless \ otherwise \ noted), \ T_A = 25^{\circ}C. \\ \hbox{(3)} & r_{on(flat)} \ is \ the \ difference \ of \ r_{on} \ in \ a \ given \ channel \ at \ specified \ voltages. \\ \hbox{(4)} & \Delta r_{on} \ is \ the \ difference \ of \ r_{on} \ from \ center \ (A_4, \ A_5) \ ports \ to \ any \ other \ port. \\ \end{array}$

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V, R_L = 200 Ω , C_L = 10 pF (unless otherwise noted) (see Figure 4 and Figure 5)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{pd} ⁽²⁾	A or B	B or A		0.25		ns
t _{PZH} , t _{PZL}	SEL	A or B	0.5		15	ns
t _{PHZ} , t _{PLZ}	SEL	A or B	0.5		9	ns
t _{sk(o)} (3)	A or B	B or A		0.05	0.1	ns
t _{sk(p)} (4)				0.05	0.1	ns

- (1) All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.
 (2) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).
- Output skew between center port (A₄ to A₅) to any other port
- (4) Skew between opposite transitions of the same output in a given device |t_{PHL} t_{PLH}|

Dynamic Characteristics

over recommended operating free-air temperature range, $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS					
X _{TALK}	$R_L = 100 \Omega$,	f = 250 MHz,	See Figure 7		-41	dB	
O _{IRR}	$R_L = 100 \Omega$,	f = 250 MHz,	See Figure 8		-39	dB	
BW	$R_L = 100 \Omega$,	See Figure 6			1.2	GHz	

(1) All typical values are at V_{CC} = 3.3 V (unless otherwise noted), T_A = 25°C.

OPERATING CHARACTERISTICS

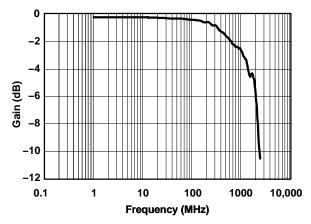


Figure 1. Gain/Phase vs Frequency

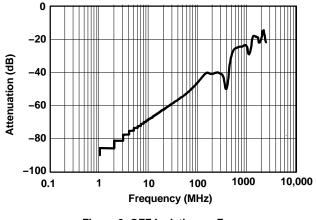


Figure 2. OFF Isolation vs Frequency

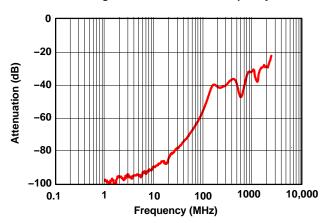


Figure 3. Crosstalk vs Frequency

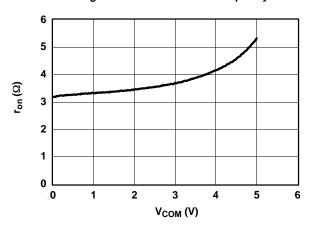
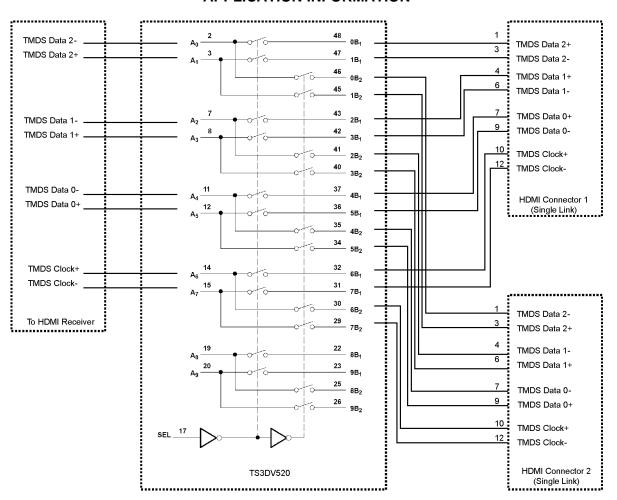
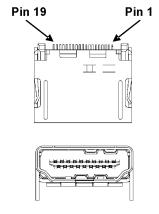



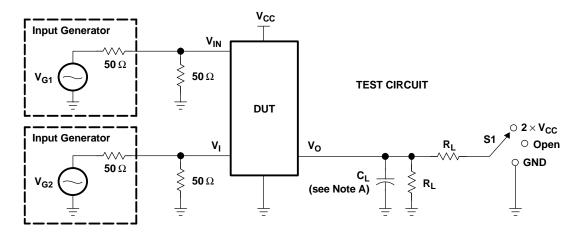
Figure 4. ron and Vo vs V1



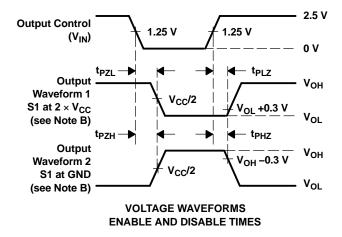
5-CHANNEL DIFFERENTIAL 10:20 MULTIPLEXER SWITCH FOR DVI/HDMI APPLICATIONS

APPLICATION INFORMATION

Typical HDMI Connector

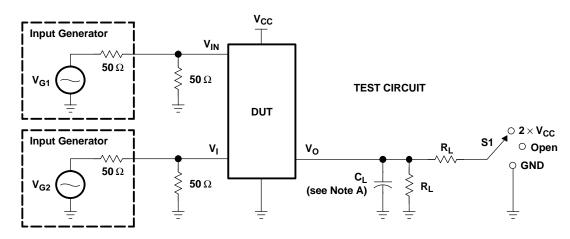


The TS3DV520 can be used to switch between two digital video ports.


Pin	Signal Assignment
1	TMDS Data2+
2	TMDS Data2 Shield
3	TMDS Data 2-
4	TMDS Data1+
5	TMDS Data1 Shield
6	TMDS Data 1-
7	TMDS Data0+
8	TMDS Data0 Shield
9	TMDS Data 0-
10	TMDS Clock+
11	TMDS Clock Shield
12	TMDS Clock-
13	CEC
14	Reserved (N.C. on device)
15	SCL
16	SDA
17	DDC/CEC Ground
18	+5V Power
19	Hot Plug Detect

PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times)

TEST	V _{CC}	S1	R _L	VI	CL	V_{Δ}
t _{PLZ} /t _{PZL}	3.3 V \pm 0.3 V	2×V _{CC}	200 Ω	GND	10 pF	0.3 V
t _{PHZ} /t _{PZH}	3.3 V \pm 0.3 V	GND	200 Ω	V _{CC}	10 pF	0.3 V



NOTES: A. C_L includes probe and jig capacitance.

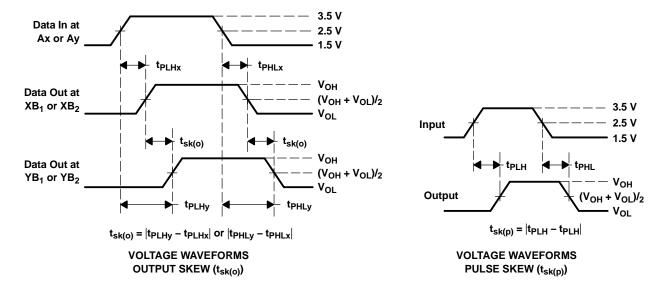
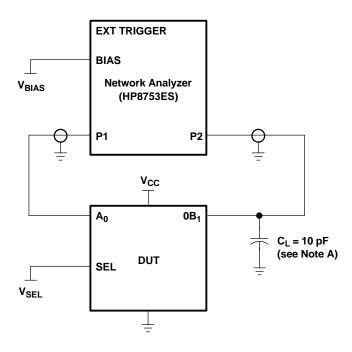

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_{O} = 50 Ω , $t_{r} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.

Figure 5. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (Skew)

TEST	V _{CC}	S1	R _L	VI	CL	V_{Δ}
t _{sk(o)}	3.3 V ± 0.3 V	Open	200 Ω	V _{CC} or GND	10 pF	
t _{sk(p)}	3.3 V ± 0.3 V	Open	200 Ω	V _{CC} or GND	10 pF	


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50~\Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 6. Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

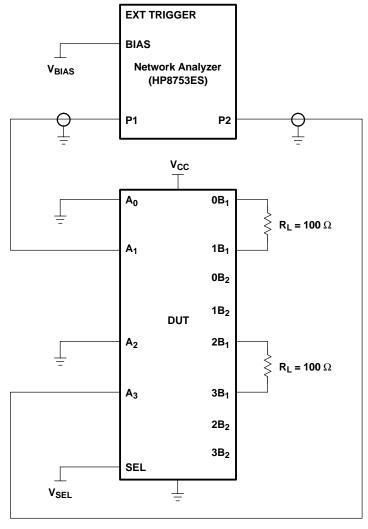
NOTE A: C₁ includes probe and jig capacitance.

Figure 7. Test Circuit for Frequency Response (BW)

Frequency response is measured at the output of the ON channel. For example, when $V_{SEL}=0$ and A_0 is the input, the output is measured at $0B_1$. All unused analog I/O ports are left open.

HP8753ES setup

Average = 4


RBW = 3 kHz

 $V_{BIAS} = 0.35 V$

ST = 2 s

P1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. A $50-\Omega$ termination resistor is needed to match the loading of the network analyzer.

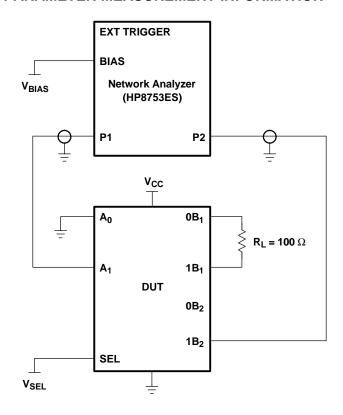
Figure 8. Test Circuit for Crosstalk (X_{TALK})

Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{SEL} = 0$ and A_0 is the input, the output is measured at $1B_1$. All unused analog input (A) ports are connected to GND, and output (B) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES setup

Average = 4

RBW = 3 kHz


 $V_{BIAS} = 0.35 \text{ V}$

ST = 2 s

P1 = 0 dBM

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. A $50-\Omega$ termination resistor is needed to match the loading of the network analyzer.

Figure 9. Test Circuit for OFF Isolation (O_{IRR})

OFF isolation is measured at the output of the OFF channel. For example, when $V_{SEL} = V_{CC}$ and A_0 is the input, the output is measured at $0B_2$. All unused analog input (A) ports are left open, and output (B) ports are connected to GND through $50-\Omega$ pulldown resistors.

HP8753ES setup

Average = 4

RBW = 3 kHz

 $V_{BIAS} = 0.35 V$

ST = 2

P1 = 0 dBM

20-Mar-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TS3DV520ERHUR	ACTIVE	WQFN	RHU	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3DV520RHUR	ACTIVE	WQFN	RHU	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3DV520RHURG4	ACTIVE	WQFN	RHU	56	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

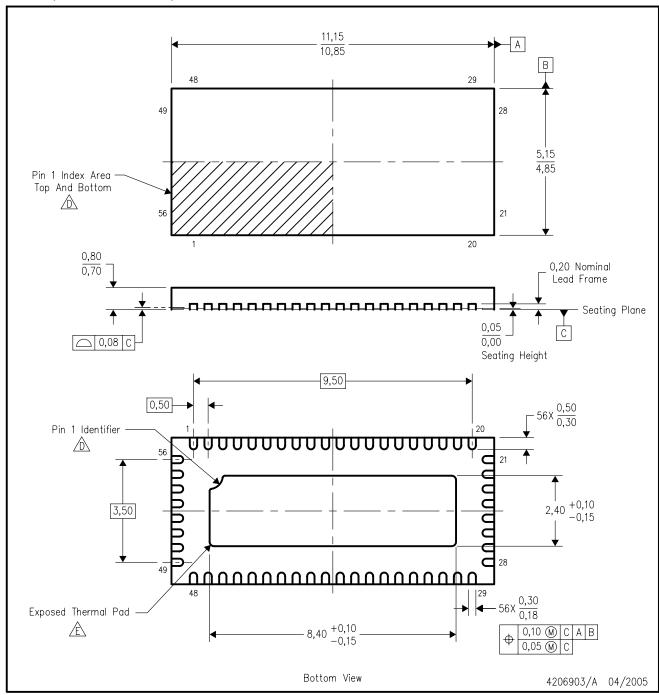
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

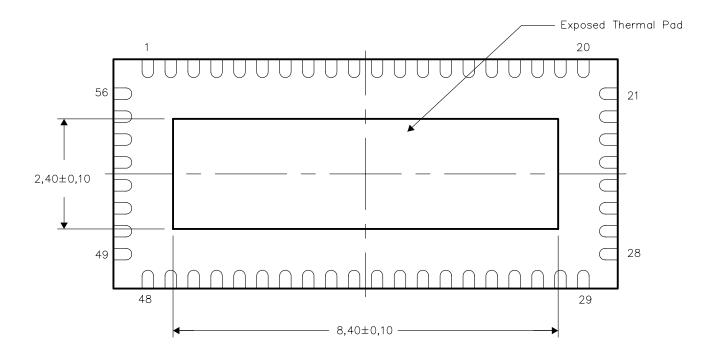
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

RHU (R-PQFP-N56)

PLASTIC QUAD FLATPACK

Notes:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
- B. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) package configuration.
- Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated.
- The Pin 1 identifiers are either a molded, marked, or metal feature.
- The package thermal pad must be soldered to the board for thermal and mechanical performance.
- F. JEDEC MO-220 package registration is pending.

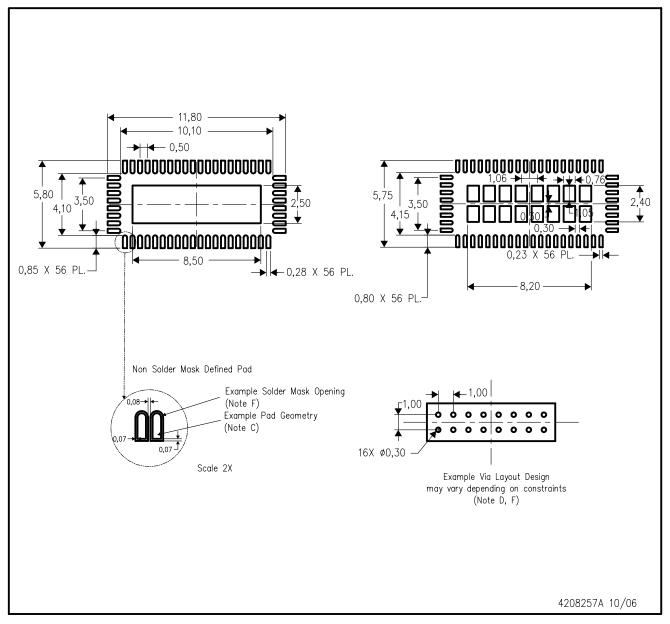


THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



Bottom View

NOTE: All linear dimensions are in millimeters

Exposed Thermal Pad Dimensions

RHU (R-PQFP-N56)

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs.
 - This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http://www.ti.com>.
 - Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated